Sliding Hidden Markov Model for Evaluating Discrete Data
نویسنده
چکیده
The possibility of handling infrequent, higher density, additional loads, used mainly for on-line characterization of workloads, is considered. This is achieved through a sliding version of a hidden Markov model (SlidHMM). Essentially, a SlidHMM keeps track of processes that change with time and the constant size of the observation set helps reduce the space and time complexity of the Baum-Welch algorithm, which now need only deal with the new observations. Practically, an approximate Baum-Welch algorithm, which is incremental and partly based on the simple moving average technique, is obtained, where new data points are added to an input trace without re-calculating model parameters, whilst simultaneously discarding any outdated points. The success of this technique could cut processing times significantly, making HMMs more efficient and thence synthetic workloads computationally more cost effective. The performance of our SlidHMM is validated in terms of means and standard deviations of observations (e.g. numbers of operations of certain types) taken from the original and synthetic traces.
منابع مشابه
Holistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملپیش بینی بیماریهای کبدی با استفاده از مدل مارکف پنهان
Background: The liver is the largest internal organ and the most important organ after heart and brain in the human body without which life is impossible. Diagnosis of liver disease requires a long time and sufficient expertise of the doctor. Statistical methods can be classified as an automated forecasting system and help specialists for quickly and accurately diagnose liver disease. Hidden Ma...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types fo gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013